博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
深度网络实现手写体识别
阅读量:6277 次
发布时间:2019-06-22

本文共 14496 字,大约阅读时间需要 48 分钟。

基于自动编码机(autoencoder),这里网络的层次结构为一个输入层,两个隐层,后面再跟着一个softmax分类器:

采用贪婪算法,首先把input和feature1看作一个自动编码机,训练出二者之间的参数,然后用feature1层的激活值作为输出,输入到feature2,即把feature1和feature2再看作一个自动编码机,训练出这两层之间的参数,这两步都没有用到分类标签,所以是无监督学习,最后把feature2的激活值作为提取的的特征,输入到分类器,这里需要标签来计算代价函数,从而由优化这个代价函数来训练出feature2与分类器之间的参数,所以这一步是有监督学习,这一步完成之后,把测试样本输入网络,最后会输出该样本分别属于每一类的概率,选出最大概率对应的类别,就是最终的分类结果。

为了使得分类结果更加精确,可以对训练出的参数进行微调,就是在有监督学习之后,我们利用有标签的训练数据可以计算出分类残差,然后利用这个残差反向传播,对已经训练出的参数进行进一步微调,会对最终预测的精度有很大提升

下面是第一层训学习出的特征:

可以看出都是一些笔迹的边缘

作为对比,训练结果显示,微调之后,分类准确度有大幅提升,所以在训练深度网络之后,利用部分标签数据进行微调是一件很有必要的学习

Before Finetuning Test Accuracy: 91.760%

After Finetuning Test Accuracy: 97.710%

下面是部分程序代码,需要用到,完整代码请先下载,然后下载,minFunc.rar里面是lbfgs优化函数,在优化网络参数时需要用到。

%% CS294A/CS294W Stacked Autoencoder Exercise%  Instructions%  ------------% %  This file contains code that helps you get started on the%  sstacked autoencoder exercise. You will need to complete code in%  stackedAECost.m%  You will also need to have implemented sparseAutoencoderCost.m and %  softmaxCost.m from previous exercises. You will need the initializeParameters.m%  loadMNISTImages.m, and loadMNISTLabels.m files from previous exercises.%  %  For the purpose of completing the assignment, you do not need to%  change the code in this file. %%%======================================================================%% STEP 0: Here we provide the relevant parameters values that will%  allow your sparse autoencoder to get good filters; you do not need to %  change the parameters below.inputSize = 28 * 28;numClasses = 10;hiddenSizeL1 = 200;    % Layer 1 Hidden SizehiddenSizeL2 = 200;    % Layer 2 Hidden SizesparsityParam = 0.1;   % desired average activation of the hidden units.                       % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",                       %  in the lecture notes). lambda = 3e-3;         % weight decay parameter       beta = 3;              % weight of sparsity penalty term       %%======================================================================%% STEP 1: Load data from the MNIST database%%  This loads our training data from the MNIST database files.% Load MNIST database filestrainData = loadMNISTImages('train-images.idx3-ubyte');trainLabels = loadMNISTLabels('train-labels.idx1-ubyte');trainLabels(trainLabels == 0) = 10; % Remap 0 to 10 since our labels need to start from 1%%======================================================================%% STEP 2: Train the first sparse autoencoder%  This trains the first sparse autoencoder on the unlabelled STL training%  images.%  If you've correctly implemented sparseAutoencoderCost.m, you don't need%  to change anything here.%  Randomly initialize the parameterssae1Theta = initializeParameters(hiddenSizeL1, inputSize);%% ---------------------- YOUR CODE HERE  ---------------------------------%  Instructions: Train the first layer sparse autoencoder, this layer has%                an hidden size of "hiddenSizeL1"%                You should store the optimal parameters in sae1OptThetaaddpath minFunc/;options = struct;options.Method = 'lbfgs';options.maxIter = 400;options.display = 'on';%训练出第一层网络的参数[sae1OptTheta, cost] =  minFunc(@(p) sparseAutoencoderCost(p,...                        inputSize,hiddenSizeL1,lambda,...                        sparsityParam,beta,trainData),...                        sae1Theta,options);save('step2.mat', 'sae1OptTheta');W1 = reshape(sae1OptTheta(1:hiddenSizeL1 * inputSize), hiddenSizeL1, inputSize);display_network(W1');% -------------------------------------------------------------------------%%======================================================================%% STEP 2: Train the second sparse autoencoder%  This trains the second sparse autoencoder on the first autoencoder%  featurse.%  If you've correctly implemented sparseAutoencoderCost.m, you don't need%  to change anything here.[sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...                                        inputSize, trainData);%  Randomly initialize the parameterssae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1);%% ---------------------- YOUR CODE HERE  ---------------------------------%  Instructions: Train the second layer sparse autoencoder, this layer has%                an hidden size of "hiddenSizeL2" and an inputsize of%                "hiddenSizeL1"%%                You should store the optimal parameters in sae2OptTheta[sae2OptTheta, cost] =  minFunc(@(p)sparseAutoencoderCost(p,...                        hiddenSizeL1,hiddenSizeL2,lambda,...                        sparsityParam,beta,sae1Features),...                        sae2Theta,options);% figure;% W11 = reshape(sae1OptTheta(1:hiddenSizeL1 * inputSize), hiddenSizeL1, inputSize);% W2 = reshape(sae2OptTheta(1:hiddenSizeL2 * hiddenSizeL1), hiddenSizeL2, hiddenSizeL1);% figure;% display_network(W2');% -------------------------------------------------------------------------%%======================================================================%% STEP 3: Train the softmax classifier%  This trains the sparse autoencoder on the second autoencoder features.%  If you've correctly implemented softmaxCost.m, you don't need%  to change anything here.[sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...                                        hiddenSizeL1, sae1Features);%  Randomly initialize the parameterssaeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, 1);%% ---------------------- YOUR CODE HERE  ---------------------------------%  Instructions: Train the softmax classifier, the classifier takes in%                input of dimension "hiddenSizeL2" corresponding to the%                hidden layer size of the 2nd layer.%%                You should store the optimal parameters in saeSoftmaxOptTheta %%  NOTE: If you used softmaxTrain to complete this part of the exercise,%        set saeSoftmaxOptTheta = softmaxModel.optTheta(:);softmaxLambda = 1e-4;numClasses = 10;softoptions = struct;softoptions.maxIter = 400;softmaxModel = softmaxTrain(hiddenSizeL2,numClasses,softmaxLambda,...                            sae2Features,trainLabels,softoptions);saeSoftmaxOptTheta = softmaxModel.optTheta(:);save('step4.mat', 'saeSoftmaxOptTheta');% -------------------------------------------------------------------------%%======================================================================%% STEP 5: Finetune softmax model% Implement the stackedAECost to give the combined cost of the whole model% then run this cell.% Initialize the stack using the parameters learnedstack = cell(2,1);stack{
1}.w = reshape(sae1OptTheta(1:hiddenSizeL1*inputSize), ... hiddenSizeL1, inputSize);stack{
1}.b = sae1OptTheta(2*hiddenSizeL1*inputSize+1:2*hiddenSizeL1*inputSize+hiddenSizeL1);stack{
2}.w = reshape(sae2OptTheta(1:hiddenSizeL2*hiddenSizeL1), ... hiddenSizeL2, hiddenSizeL1);stack{
2}.b = sae2OptTheta(2*hiddenSizeL2*hiddenSizeL1+1:2*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2);% Initialize the parameters for the deep model[stackparams, netconfig] = stack2params(stack);stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ];%% ---------------------- YOUR CODE HERE ---------------------------------% Instructions: Train the deep network, hidden size here refers to the '% dimension of the input to the classifier, which corresponds % to "hiddenSizeL2".%%[stackedAEOptTheta, cost] = minFunc(@(p)stackedAECost(p,inputSize,hiddenSizeL2,... numClasses, netconfig,lambda, trainData, trainLabels),... stackedAETheta,options);save('step5.mat', 'stackedAEOptTheta');% -------------------------------------------------------------------------%%======================================================================%% STEP 6: Test % Instructions: You will need to complete the code in stackedAEPredict.m% before running this part of the code%% Get labelled test images% Note that we apply the same kind of preprocessing as the training settestData = loadMNISTImages('t10k-images.idx3-ubyte');testLabels = loadMNISTLabels('t10k-labels.idx1-ubyte');testLabels(testLabels == 0) = 10; % Remap 0 to 10[pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ... numClasses, netconfig, testData);acc = mean(testLabels(:) == pred(:));fprintf('Before Finetuning Test Accuracy: %0.3f%%\n', acc * 100);[pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ... numClasses, netconfig, testData);acc = mean(testLabels(:) == pred(:));fprintf('After Finetuning Test Accuracy: %0.3f%%\n', acc * 100);% Accuracy is the proportion of correctly classified images% The results for our implementation were:%% Before Finetuning Test Accuracy: 87.7%% After Finetuning Test Accuracy: 97.6%%% If your values are too low (accuracy less than 95%), you should check % your code for errors, and make sure you are training on the % entire data set of 60000 28x28 training images % (unless you modified the loading code, this should be the case)

 

function [ cost, grad ] = stackedAECost(theta, inputSize, hiddenSize, ...                                              numClasses, netconfig, ...                                              lambda, data, labels)                                         % stackedAECost: Takes a trained softmaxTheta and a training data set with labels,% and returns cost and gradient using a stacked autoencoder model. Used for% finetuning.                                         % theta: trained weights from the autoencoder% visibleSize: the number of input units% hiddenSize:  the number of hidden units *at the 2nd layer*% numClasses:  the number of categories% netconfig:   the network configuration of the stack% lambda:      the weight regularization penalty% data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. % labels: A vector containing labels, where labels(i) is the label for the% i-th training example%% Unroll softmaxTheta parameter% We first extract the part which compute the softmax gradientsoftmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);% Extract out the "stack"stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);% You will need to compute the following gradientssoftmaxThetaGrad = zeros(size(softmaxTheta));stackgrad = cell(size(stack));for d = 1:numel(stack)    stackgrad{d}.w = zeros(size(stack{d}.w));    stackgrad{d}.b = zeros(size(stack{d}.b));endcost = 0; % You need to compute this% You might find these variables usefulM = size(data, 2);groundTruth = full(sparse(labels, 1:M, 1));%% --------------------------- YOUR CODE HERE -----------------------------%  Instructions: Compute the cost function and gradient vector for %                the stacked autoencoder.%%                You are given a stack variable which is a cell-array of%                the weights and biases for every layer. In particular, you%                can refer to the weights of Layer d, using stack{d}.w and%                the biases using stack{d}.b . To get the total number of%                layers, you can use numel(stack).%%                The last layer of the network is connected to the softmax%                classification layer, softmaxTheta.%%                You should compute the gradients for the softmaxTheta,%                storing that in softmaxThetaGrad. Similarly, you should%                compute the gradients for each layer in the stack, storing%                the gradients in stackgrad{d}.w and stackgrad{d}.b%                Note that the size of the matrices in stackgrad should%                match exactly that of the size of the matrices in stack.%depth = numel(stack);z = cell(depth+1,1);a = cell(depth+1, 1);a{
1} = data;for layer = (1:depth) z{layer+1} = stack{layer}.w * a{layer} + repmat(stack{layer}.b, [1, size(a{layer},2)]); a{layer+1} = sigmoid(z{layer+1});endM = softmaxTheta * a{depth+1};M = bsxfun(@minus, M, max(M));p = bsxfun(@rdivide, exp(M), sum(exp(M)));cost = -1/numClasses * groundTruth(:)' * log(p(:)) + lambda/2 * sum(softmaxTheta(:) .^ 2);softmaxThetaGrad = -1/numClasses * (groundTruth - p) * a{depth+1}' + lambda * softmaxTheta;d = cell(depth+1);d{depth+1} = -(softmaxTheta' * (groundTruth - p)) .* a{depth+1} .* (1-a{depth+1});for layer = (depth:-1:2) d{layer} = (stack{layer}.w' * d{layer+1}) .* a{layer} .* (1-a{layer});endfor layer = (depth:-1:1) stackgrad{layer}.w = (1/numClasses) * d{layer+1} * a{layer}'; stackgrad{layer}.b = (1/numClasses) * sum(d{layer+1}, 2);end% -------------------------------------------------------------------------%% Roll gradient vectorgrad = [softmaxThetaGrad(:) ; stack2params(stackgrad)];end% You might find this usefulfunction sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x));end

 

function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data)                                         % stackedAEPredict: Takes a trained theta and a test data set,% and returns the predicted labels for each example.                                         % theta: trained weights from the autoencoder% visibleSize: the number of input units% hiddenSize:  the number of hidden units *at the 2nd layer*% numClasses:  the number of categories% data: Our matrix containing the training data as columns.  So, data(:,i) is the i-th training example. % Your code should produce the prediction matrix % pred, where pred(i) is argmax_c P(y(c) | x(i)). %% Unroll theta parameter% We first extract the part which compute the softmax gradientsoftmaxTheta = reshape(theta(1:hiddenSize*numClasses), numClasses, hiddenSize);% Extract out the "stack"stack = params2stack(theta(hiddenSize*numClasses+1:end), netconfig);%% ---------- YOUR CODE HERE --------------------------------------%  Instructions: Compute pred using theta assuming that the labels start %                from 1.depth = numel(stack);z = cell(depth+1,1);a = cell(depth+1, 1);a{
1} = data;for layer = (1:depth) z{layer+1} = stack{layer}.w * a{layer} + repmat(stack{layer}.b, [1, size(a{layer},2)]); a{layer+1} = sigmoid(z{layer+1});end[~, pred] = max(softmaxTheta * a{depth+1});% -----------------------------------------------------------end% You might find this usefulfunction sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x));end

 

转载于:https://www.cnblogs.com/90zeng/p/Stacked_Autoencoders.html

你可能感兴趣的文章
Qt下QTableWidget的使用
查看>>
mybatis 针对SQL Server 的 主键id生成策略
查看>>
vmware安装centOs操作系统配置网络的一系列问题
查看>>
jquery基本选择器
查看>>
2天时间终于把ntopng装好了
查看>>
Mac配置环境变量注意点
查看>>
Lua string.gsub (s, pattern, repl [, n])
查看>>
智能聊天机器人实现(源代码+解析)
查看>>
微表面分布函数(Microfacet Distribution Function)确切含义
查看>>
轻松python文本专题-字符与字符值转换
查看>>
JAVA-MyEclipse第一个实例
查看>>
iOS 9 学习系列: Xcode Code Coverage
查看>>
休眠模式的开关闭
查看>>
Variable number of arguments (Varargs)
查看>>
jquery.ajax之beforeSend方法使用介绍
查看>>
usb键鼠驱动分析【钻】
查看>>
shell中while循环的陷阱
查看>>
Java 系书籍,,,,,,,,,,,,,
查看>>
binlog 轻松的找到没有及时提交的事物(infobin工具
查看>>
windows下如何创建没有名字的.htaccess文件
查看>>